The power of Virus Machines

Antonio Ramírez de Arellano Marrero

Research Group on Natural Computing 21st BWMC

Natural Computing

Inspiration: Biological Viruses

Virus Machine (VM) of degree (p,q)

$\mathbf{\Pi} = (\mathbf{\Gamma}, \mathbf{H}, \mathbf{I}, \mathbf{D}_{H}, \mathbf{D}_{I}, \mathbf{G}_{C}, \mathbf{n}_{1}, \dots, \mathbf{n}_{p}, \mathbf{i}_{1}, \mathbf{h}_{out})$

1. L. Valencia-Cabrera, M.J. Pérez-Jiménez, X. Chen, B. Wang, X. Zheng. et al. Basic virus machines. CMC16, 2015, Valencia, Spain.

The power of VM Generating sets of natural numbers

 X. Chen, et al. Computing with viruses. Theoretical Computer Science, 623 (2016).
A. Ramírez-de-Arellano, et al. <u>Generating, Computing and Recognizing with VM</u>. Theoretical Computer Science, 972(114077), (2023).

What if the topology matters?

- 1. The biggest loops in the instruction or/and host graphs
- 2. Bijection between channels and hosts
- 3. Weight of the channels
- 4. Out-degree of each host in the host graph

Normal

forms

New power: Generating Strings

Semantics

- Let the finite alphabet Σ , a VM in generating strings mode of this alphabet will have labeled each host to a one element of Σ , including the empty string.
- Let $L(\Pi)$ the set of strings generated by VM Π .
- Let LVM(p,q,n) the class of languages generated by VMs with the usual limitations.

An example

Standard form

- Fix the topology of the host h_{a1} empty. h_e h_{a2} h_{ak}
- Initial instruction is i₁ and there is only one halting instruction i_{halt}.
 - In the halting configuration h_e only has one host and al the other host must be empty.

"Standard" seems to be a good name

Host graph of a small universal VM¹

1. A. Ramírez-de-Arellano, et al. Using VM to compute Pairing functions. Int. Journal of Neural Systems, 33(05), (2023)⁵

over a finite alphabet if

1.Ø

2.ε

- 3.{a}
- 4. r₁r₂ (Concatenation)
- 5. $r_1 U r_2$ (Alternation) 6. r^* (Kleene star)

Let's go to the blackboard!

A new field of exploration

Characterizat ion of REG by VM

Normal forms

Can we skip the "standard form"

Variants of VM

www.cs.us.es/perfiles/antonioramirez-de-arellano-marrero

Thank you

aramirezdearellano@us .es